Hydrogen Sulfide Deactivates Common Nitrobenzofurazan-Based Fluorescent Thiol Labeling Reagents

نویسندگان

  • Leticia A. Montoya
  • Michael D. Pluth
چکیده

Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NBD-based colorimetric and fluorescent turn-on probes for hydrogen sulfide.

Hydrogen sulfide (H2S) is an important endogenous signalling molecule and also an important environmental target for detection. New reaction-based colorimetric and fluorescent turn-on probes based on selective thiolyling of NBD (7-nitro-1,2,3-benzoxadiazole) ether were explored for sensing of H2S in aqueous buffer. The syntheses of both probes are simple and quite straightforward. The probes ar...

متن کامل

Thiol Reactive Probes and Chemosensors

Thiols are important molecules in the environment and in biological processes. Cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H(2)S) play critical roles in a variety of physiological and pathological processes. The selective detection of thiols using reaction-based probes and sensors is very important in basic research and in disease diagnosis. This review focuses o...

متن کامل

Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins.

Cysteine sulfenic acid formation in proteins results from the oxidative modification of susceptible cysteine residues by hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. This species represents a biologically significant modification occurring during oxidant signaling or oxidative stress, and it can modulate protein function. Most methods to identify such oxidatively modified protein...

متن کامل

Hydrogen sulfide removal from biogas using chemical absorption technique in packed column reactors

The toxicity and corrosion potential of hydrogen sulfide in raw biogas underlines the need for biogas purification. Several techniques available for removal of hydrogen sulfide from biogas are out of the reach for common end users due to lack of knowledge, higher running costs, and insufficient operational skills. The present experimental study aims to propagate hydrogen sulfide removal techniq...

متن کامل

Studies on Boronic Acid-modified Nucleotides for Diagnostic Applications and Development of Fluorescent Chemoprobes for Molecules of Biological Importance

Post-synthesis DNA modification is a very useful method for DNA functionalization. This is achieved by using a modified NTP, which has a handle for further modifications, replacing the corresponding natural NTP in polymerase-catalyzed DNA synthesis. Subsequently, the handle can be used for further functionalization, preferably through a very fast reaction. Herein we describe polymerase-mediated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2014